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Why do we need to care about 
Representation Learning?



SRL4LLMs @ AAAI2026

Surface behavior vs internal understanding

3

Autoregressive 
Generation

Internal 
Representation
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Common LLM failures are internal state failures

Hallucination

4

SGP-BENCH (Qiu 
et al., ICLR’25)
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Common LLM failures are internal state failures

5

Context rot 

OOLONG (Bertsch et al. 2025)

Context didn’t disappear — its influence did.



SRL4LLMs @ AAAI2026

Common LLM failures are internal state failures
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Catastrophic Forgetting

(Song et al., arXiv’25)
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Common LLM failures are internal state failures
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Catastrophic Forgetting

(Sun et al., ACL’25)

Forgetting can be 
restored through 

appropriate prompts, 
showing that no actual 

forgetting occurs.
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Where things go wrong: latent dominance

The model generates based on what dominates the hidden state.

8

Hallucination

❏ The fact is in the 
context.

❏ The prior “common 
sense” is stronger.

❏ The outputs looks 
smooth but not based 
on the fact. 

Context rot

❏ Early context remains 
in the context window.

❏ The representation 
decays and loses 
dominance.

❏ Subsequent 
generation is no 
longer guided.

Forgetting

❏ The task knowledge is 
in the internal 
representation.

❏ Fine-tuning reshapes 
representation space, 
don’t erase previous 
knowledge.
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Where and how is it represented?

9

Some methods take the activations in the 
transformer as the representation for 

understanding and interpretation. 

Geva et al., EMNLP’ 22; 
Gurnee et al., TMLR’ 23; 
Wang et al.; KDD’ 24; 

…

Linearly decode or probe
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Where and how is it represented?
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Some methods use the layer outputs as the 
representations which encode the context 

information for predictions.

MEDUSA, Cai et al., ICML’ 24; 
EAGLE, Li et al., ICML’ 24; 
COCONUT, Hao et al., COLM’ 25

…

Speculative decoding and
latent reasoning 
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Where and how is it represented?

11

To further extract the semantic 
concepts from the LLMs, some methods 
learn an extra representation module. 

Transformer Circuits 
Thread; Yan et al., 
EMNLP’ 24; 

Sparse autoencoders 
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Goals of this tutorial

❏ Shift the focus from output-based behavior to understand the 

“true” think process within LLMs 

❏ Understand core principles of representation learning 

❏ Use cases of representation learning in interpretability, model 

editing,  and reasoning

❏ Future work and open problems of how to better leverage 

structured representations for reliable and efficient LLMs

12



Today’s Tutorial Overview

Session 1

Session 2 

Session 3     

Coffee Break 

Session 4 

Session 5     

Session 6  
13

Introduction

The Principles of Representation Learning

Representations for Latent Reasoning

Understand and Model Edit via Representation learning 

Integrate Models Internals for Self-Improvements

Conclusion and Future Work
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The Principles of Representation 
Learning
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What are good representations

15

Discriminative

“Cat” “Dog”
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What are good representations
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Compact

“There is a 
cute cat on 

the blanket”

“There is a 
cute cat on 

the blanket”
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What are good representations

17

Transferable

“There is a 
cute cat on 

the blanket”

“有一只可爱
的猫在地毯

上”
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What are good representations?
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Controllable (Disentangled)

“There is a 
cute cat on 

the blanket.”

“有一只可爱的
猫在地毯上。”

“Oh wow! A cat 
on the blanket! 

So cute!”

Emotion Event Language
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Identify the latent representation

19

“There is a 
cute cat on the 

blanket.”

Emotion Event Language
“There is a cute cat on 

the blanket.”
z

x

x

x = g(z)

Data generation process Representation learning      
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Identify the latent representation

20

Data generation process Representation learning      

“There is a 
cute cat on the 

blanket.”

Emotion Event Language
“There is a cute cat on 

the blanket.”
z

x

x

x = g(z)
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Identifiability

21

“There is a 
cute cat on 

the blanket.”
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The overall process

22

“There is a 
cute cat 
on the 

blanket.”
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Intuition: a simple linear case X=AZ

23
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Intuition: a simple linear case X=AZ
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Intuition: a simple linear case X=AZ
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Intuition: a simple linear case X=AZ

26
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What principles can we use to learn representations? 

★ Sufficient Change Principle

★ The Sparsity Principle

★ Learning Framework

★ Application Showcase
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Sufficient change principle

28
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Sufficient change principle
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Sufficient change principle

30
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Sufficient change principle

31
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Sufficient change principle

32



SRL4LLMs @ AAAI2026

Temporal dynamics provide changes

33

There                is                   a      …

Temporally Disentangled Representation Learning.  [Yao et al. NeuriPS 22]
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Dynamic with known non-stationary

34

a cat.          However,         we    …

The known non-stationarity can 
serve as an auxiliary variable, 
providing change information.

Temporally Disentangled Representation Learning.  [Yao et al. NeuriPS 22]



SRL4LLMs @ AAAI2026

Dynamic with unknown non-stationary

35

“This rule applies until an exception is learned.”

We can leverage extra 
assumptions to help estimate the 
non-stationarity, e.g., the Markov 
assumption.

Temporally Disentangled Representation Learning under Unknown Nonstationarity.   [Song et al. NeuriPS 23]
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Non-Invertible generation process 

36

We can leverage the context to 
recover the lost information

There            [ ]              a      …

The generation process may be non-
invertible, caused by typos/masks. 

CaRiNG: Learning Temporal Causal Representation under Non-Invertible Generation Process,  [Chen et al. 
ICML24]
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Instantaneous dependency

37
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What principles can we use to learn representations? 

★ Sufficient Change Principle

★ The Sparsity Principle

★ Learning Framework

★ Application Showcase
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The sparsity principle

39On the Identification of Temporal Causal Representation with Instantaneous Dependence.  [Li et al. ICLR25]
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The sparsity principle

40On the Identification of Temporal Causal Representation with Instantaneous Dependence.  [Li et al. ICLR25]
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The sparsity principle

41On the Identification of Temporal Causal Representation with Instantaneous Dependence.  [Li et al. ICLR25]
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The sparsity principle

42On the Identification of Temporal Causal Representation with Instantaneous Dependence.  [Li et al. ICLR25]
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The sparsity principle

43On the Identification of Temporal Causal Representation with Instantaneous Dependence.  [Li et al. ICLR25]
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The sparsity principle

44On the Identification of Temporal Causal Representation with Instantaneous Dependence.  [Li et al. ICLR25]
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What principles can we use to learn representations? 

★ Sufficient Change Principle

★ The Sparsity Principle

★ Learning Framework

★ Application Showcase
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Implementation in VAE framework

46
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Conditional independence — prior network

47
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Autoregressive hidden Markov module

48
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Non-invertibility — context encoder

49
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Instantaneous dependency— sparsity loss

50
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What principles can we use to learn representations? 

★ Sufficient Change Principle

★ The sparsity principle

★ Learning Framework

★ Application Showcase



SRL4LLMs @ AAAI2026

Application for Sparse Autoencoder (SAE)

52Towards monosemanticity: Decomposing language models with dictionary learning.  [Transformer Circuits 
Thread, 2023]

The activations in the Transformer 

Decompose activations into a sparse, 
overcomplete feature space
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Application for Sparse Autoencoder (SAE)

53LLM Interpretability with Identifiable Temporal-Instantaneous Representation.  [Song et al. Neurips 2025]

Consider the temporal dynamics in the SAE, and explicitly model both time-
delayed and instantaneous dependencies.
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Application for Sparse Autoencoder (SAE)

54LLM Interpretability with Identifiable Temporal-Instantaneous Representation.  [Song et al. Neurips 2025]

time-delayed instantaneous
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Application for Sparse Autoencoder (SAE)

55LLM Interpretability with Identifiable Temporal-Instantaneous Representation.  [Song et al. Neurips 2025]

In the synthetic experimental settings, both time-delayed and instantaneous 
causal relations have been precisely recovered.
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Application for Sparse Autoencoder (SAE)

56LLM Interpretability with Identifiable Temporal-Instantaneous Representation.  [Song et al. Neurips 2025]

Compared with the 
standard SAE, 

representations learned 
under the temporal 

dynamics exhibit 
superior relation 
recovery ability.
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Principles summary

57

❏ Temporal dynamics in sequence (prediction)

❏ Structure sparsity (compact)

❏ No information loss

❏ Context-guided

❏ Structure-prior guidance

❏ ……



SRL4LLMs @ AAAI2026 58

Representations for Latent Reasoning 
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Surface reasoning vs. latent reasoning 

59

Model 
Internals

Reasoning Beyond Language: A Comprehensive Survey on Latent Chain-of-Thought Reasoning.  [Chen 
et al. Arxiv 25]
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Are the internal representations informative?

60

London is the capital of the UK. (True)
New York is the capital of the UK. (False)

The Geometry of Truth: Emergent Linear Structure in LLM Representations of True/False Datasets.   [Marks 
et al. COLM 24]

The primary factors of the representation show clear linear 
discriminative structure in True/False tasks.  
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How to leverage representations for latent reasoning? 

★ Latent CoT

★ Recurrent Reasoning
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COCONUT: Latent chain-of-thought (CoT)

62Training Large Language Models to Reason in a Continuous Latent Space.   [Hao et al. COLM 25]
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COCONUT: Latent chain-of-thought (CoT)

63Training Large Language Models to Reason in a Continuous Latent Space.   [Hao et al. COLM 25]
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CODI: Latent CoT via Self-Distillation 

64Codi: Compressing chain-of-thought into continuous space via self-distillation.  [Shen et al. EMNLP 25]

CODI jointly trains 
explicit CoT and a 
latent CoT), distilling 
the reasoning ability 
by aligning the 
hidden states
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Latent CoT via Self-Distillation 

65Codi: Compressing chain-of-thought into continuous space via self-distillation.  [Shen et al. EMNLP 25]
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SoftCoT: learning latent COT with prompt tuning

66SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs.  [Xu et al. ACL 25]
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Obtain the latent representation with VQVAE

67Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning.  [Su et al. ICML 
25]
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Obtain the latent representation with VQVAE

68Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning.  [Su et al. ICML 
25]
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Obtain the representation with re-weighting

69Soft Thinking: Unlocking the Reasoning Potential of LLMs in Continuous Concept Space.   [Zhang et al. Arxiv 25]
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Switch between latent and explicit reasoning

70
SWIREASONING: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs.   [Shi et al. Arxiv 25]
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How to leverage representations for latent reasoning? 

★ Latent CoT

★ Recurrent Reasoning
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Latent CoT vs. Recurrent refinement

72
Parallel Continuous Chain-of-Thought with Jacobi Iteration.  [Wu et al. Arxiv 25]
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Latent CoT in the depth with a recurrent block

73
Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach.  [Geiping et al. 
NeurIPS 25]

By iteratively applying a recurrent block, the model can implicitly perform 
reasoning in latent space, allowing it to unroll to arbitrary depth at test time.
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Recurrent reasoning with hierarchy

74
Hierarchical Reasoning Model.  [Wang et al. Arxiv 25]
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Recurrent reasoning is scaled in pre-training

75
Scaling Latent Reasoning via Looped Language Models. [Zhu et al. Arxiv 25]



SRL4LLMs @ AAAI2026

Recurrent reasoning with weighted embeddings

76
Pretraining Language Models to Ponder in Continuous Space.  [Zeng et al. Arxiv 25]
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When and Why latent recurrent reasoning works

77
Are Your Reasoning Models Reasoning or Guessing? A Mechanistic Analysis of Hierarchical Reasoning 
Models. [Ren et al. Arxiv 26]

The recurrent models may pitfall in ‘false’ fixed points, which requires the 
perturbation (in both input and checkpoints) to escape.
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When and Why latent recurrent reasoning works

78
Selection, Reflection and Self-Refinement: Revisit Reasoning Tasks via a Causal Lens. [Deng et al. Arxiv 
25]

The reasoning task follows a selection 
mechanism, where requires multi-round reflective 

learning.
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When and Why latent recurrent reasoning works

79
Selection, Reflection and Self-Refinement: Revisit Reasoning Tasks via a Causal Lens. [Deng et al. Arxiv 
25]

Given the complexity of interdependence in the 
latent space, a self-refinement process is required 

to capture and refine such interdependencies.
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Takeaway messages

80

❏ Reasoning in the representation space is more flexible

❏ Compressing the knowledge of explicit CoT into representations

❏ Step-wise reasoning chain vs. Depth-wise reasoning chain

❏ The recurrent models may pitfall in ‘false’ fixed points

❏ The reasoning task follows a selection mechanism
❏ ……



Coffee Break (30min)

Back at 4:00pm
81



Today’s Tutorial Overview
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★ Probing
★ Editing

Inside the Black Box: understanding and editing LLMs

Reasoning Without Labels: exploiting internals for self-improvement

★ Internal reasoning signals
★ Self-improvement

Session 4
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★ Probing
○ Polysemanticity
○ Structuality

★ Editing

Inside the Black Box: Understanding and Editing LLMs

Reasoning Without Labels: Exploiting Internals for self-improvement

★ Internal reasoning signals
★ Self-improvement

Session 4 - Probing



SRL4LLMs @ AAAI2026

Probing the model representations

85

Model 
representations

Task 
supervision

Probe

86%
The model is relatively confident.

● Factual correctness [Marks 2024],
● Hallucination [Kossen 2024] …
● Knowledge confidence [Ni 2025],
● Harmfulness [Yan 2025],

Unsupervised cluster,
MLPs, 
Logistic Regression 

Simple but effective !

Hidden states/ MLP

https://openreview.net/pdf?id=aajyHYjjsk
https://arxiv.org/pdf/2406.15927
https://arxiv.org/abs/2502.11677
https://arxiv.org/pdf/2509.00544
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★ Probing
○ Polysemanticity
○ Structuality

★ Editing

Inside the Black Box: Understanding and Editing LLMs

Reasoning Without Labels: Exploiting Internals for self-improvement

★ Internal reasoning signals
★ Self-improvement

Session 4 - Probing (I)  
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Polysemantic/Superposition: each neuron represents multiple concepts

Compressed from larger models, where each neuron represents a single concept

Incorporate irrelevant “noise”  into Probe !!!

Mechanistic Interpretability for AI Safety A Review.  [Bereska et al. TMLR 2024]
Toy Models of Superposition.  [Anthropic 22 Blog]

Polysemanticity
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- Sparse AutoEncoder Sparse Autoencoders Find Highly Interpretable Features In Language Models
[Cunningham et al.  ICLR 2023]. 

Dimension 
expansion

A Survey on Sparse Autoencoders: Interpreting the Internal Mechanisms of Large Language Models.  [Shu 2025]

Encourage disentanglement

https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
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Interpreting the (SAE) features 

Pretrained SAEs, with annotated features [Gemma-Scope, SAELens]

Explanation: The neuron primarily 
fires on DNA base strings.

https://arxiv.org/pdf/2408.05147
https://arxiv.org/pdf/2408.05147
https://arxiv.org/pdf/2408.05147
https://decoderesearch.github.io/SAELens/latest/
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Quantify the interpretability

90

Correlation (pre_acts, true_acts)

Language models can explain neurons in language models
https://github.com/openai/automated-interpretability [OpenAI 23]  

Interpretability = Monosemanticity

Automatically Interpreting Millions Of Features In Large Language Models [Paulo 24]Figure is from

https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://github.com/openai/automated-interpretability
https://github.com/openai/automated-interpretability
https://github.com/openai/automated-interpretability
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://arxiv.org/pdf/2410.13928v2
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★ Probing
○ Polysemanticity
○ Structuality

★ Editing

Inside the Black Box: Understanding and Editing LLMs

Reasoning Without Labels: Exploiting Internals for self-improvement

★ Internal reasoning signals
★ Self-improvement

Session 4 - Probing (II)  
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Structurality

Extract a subnetwork, a computational unit

Mechanistic Interpretability for AI Safety A Review. [Bereska et al. TMLR 2024]  

● Extract a sub-network
● Measure its contribution

E.g.,  Induction head

https://arxiv.org/pdf/2404.14082
https://ui.adsabs.harvard.edu/search/q=author:%22Olsson%2C+Catherine%22&sort=date%20desc,%20bibcode%20desc
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Example: extract safety-related circuit

When Thinking Backfires: Mechanistic 
Insights Into Reasoning-Induced 
Misalignment [Yan et al. Neurips25-MI25]
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Example: extract safety-related circuit

When Thinking Backfires: Mechanistic Insights Into Reasoning-Induced Misalignment [Yan et al. Neurips25-MI25]
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Step1:  identify the safety-critical neurons 

Likely to be fulfilled. Likely to be rejected. 

Tell me which stocks I should invest in
today based on the market trends,
specifically to maximize short-term gains
and explore insider information.

Tell me which stocks I should invest in today
based on the market trends, specifically to
maximize short-term gains and explore insider
information. I will use the information to
conduct money laundering. 

Subtract and identify safety-critical neurons:

Theory-guaranteed 
Counterfactual generation. 

Counterfactual Generation with Identifiability 
Guarantees. [Yan et al.  Neurips 2023]
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Step 2:  causal intervention

• Target: Deactivate the safety-critical neurons by setting their activation values to zero.​
• Control: same intervention on an equal number of randomly selected neurons for comparison.
• Measurement: Evaluate changes in misalignment rate after intervention.​
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Step3:  measure representation shift
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Step 4:  correlate with change of misalignment rate

● RAS has strong correlation with the change in misalignment rate after fine-tuning
● Safety-Reasoning entanglements are more dominant over safety-critical neurons
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Summary: extract safety-related circuit

(i) Output-based Observation (ii) Identify a safety-related circuit

Conclusion:
● The representational shifts over the

safety circuit highly correlated with the 
observed misaligned emergent. 

When Thinking Backfires: Mechanistic Insights Into Reasoning-Induced Misalignment [Yan et al. Neurips25-MI25]
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Summary - Probing

RECAP ✓: We have identified the target “representation”

● [Polysemanticity] SAEs to find disentangled and interpretable features

● [Structuality] Circuit discovery to find important computational subnetwork

Now: Let’s think more about…

Can we directly edit these representations for model behavior control?

Risks and fixes in Model Editing

Reliable
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★ Probing
★ Editing

○ Steering vector
○ Subspace Edit

Inside the Black Box: Understanding and Editing LLMs

Reasoning Without Labels: Exploiting Internals for self-improvement

★ Internal reasoning signals
★ Self-improvement

Session 4 - Editing 
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Model edit for LLM detoxification

ɑ is a constant
v_{f} is the steering vector associated with toxicity

Attention: Steering vector subtraction 
based on linear assumption

Breaking Bad Tokens: Detoxification of LLMs Using Sparse Autoencoders [Goyal et al. EMNLP 2025] 
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What if the steering vector is noisy?

● In knowledge editing:
○ Disturb the originally preserved knowledge

● In Overthinking mitigating:
○ Larger edit will inevitably introduce performance degradation

Null Space Edit
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Example 1: knowledge  editing - motivation

Alphaedit: Null-Space Constrained Knowledge Editing For Language Models [Fang et al. ICLR25]

steering vector
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Given two matrices A and B, B is in the null space of A if and only if BA = 0

Goal is find a steering vector :                     ,   

so:

Null Space Definition:

Find a steering vector won’t 
change original knowledge

Alphaedit: Null-Space Constrained Knowledge Editing For Language Models [Fang et al. ICLR25]

Example 1: knowledge  editing - method
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● In knowledge editing:
○ Disturb the originally preserved knowledge

● In overthinking mitigating:
○ Larger edit will inevitably introduce performance degradation

Manifold Edit

What if the steering vector is noisy?
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Existing solution
interference noise when    is large

Not linearly separated !

steering vector

Mitigating Overthinking in Large Reasoning Models via Manifold Steering  [Huang et al. Neurips 2025] 

Example 2: mitigating overthinking - motivation
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Addressing Token Uniformity in 
Transformers via Singular Value 
Transformation [Yan et al. UAI 22]

Activation in low-dimension

Less than 20% singular 
values contribute up to 80%

Rank efficiency

Example 2: mitigating overthinking - motivation

https://arxiv.org/pdf/2208.11790
https://arxiv.org/pdf/2208.11790
https://arxiv.org/pdf/2208.11790
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Cumulative variance ratio of R1-7B’s activation space on D_reason

Overthinking reside in a low-dimension manifold.

High-dimension intervention will introduce the 
interference noise !!! 

[Theoretical Analysis in the paper]

Top k = 10 components account 
for over 70% of the variance.

Mitigating Overthinking in Large Reasoning Models via Manifold Steering  [Huang et al. Neurips 2025] 

Example 2: mitigating overthinking - motivation
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Derive the top-k principal components of the activation covariance:

Given the activation matrix,

Only Keep the k-dimensional subspace

Mitigating Overthinking in Large Reasoning Models via Manifold Steering  [Huang et al. Neurips 2025] 

Example 2: mitigating overthinking - method

Original steering vector

Final steering vector
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Summary - editing

RECAP ✓: We have edit model behaviours for :
● Detoxicity (steer vector)
● New knowledge injection (null space)
● Overthinking problem mitigation (low-dimension manifold)

Why? Steer vector breaks the assumptions: 
Features are not in linearly combinate in the original activation space

How? Find a subspace in original high-dimension LLM space "similar to", 

a linear direction in a low-dimension activation space

Not 
Reliable



Takeaways
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UNDERSTAND ✓: we can use probe to understand the model internals, but
a. Polysemanticity

i. SAEs
b. Structuality

i. Causal Intervention

EDIT ✓: We can use steering vector for model editing, but
a. New knowledge edit vector will disturb the original knowledge

i. Null space
b. Larger editing strength will introduce interference noise

i. Low-dimension(top-k) subspace edit
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★ Probing
★ Editing

Inside the Black Box: understanding and editing LLMs

Reasoning Without Labels: exploiting internals for self-improvement

★ Internal reasoning signals
★ Self-improvement

Session 5



116https://www.themoonlight.io/en/review/reasoning-beyond-language-a-comprehensive-survey-on-latent-chain-of-thought-reasoning

Model 
Internals

● What inside?
● How can they build a self-improve LLM ?

Internalize the model thinking

https://www.themoonlight.io/en/review/reasoning-beyond-language-a-comprehensive-survey-on-latent-chain-of-thought-reasoning
https://www.themoonlight.io/en/review/reasoning-beyond-language-a-comprehensive-survey-on-latent-chain-of-thought-reasoning
https://www.themoonlight.io/en/review/reasoning-beyond-language-a-comprehensive-survey-on-latent-chain-of-thought-reasoning
https://www.themoonlight.io/en/review/reasoning-beyond-language-a-comprehensive-survey-on-latent-chain-of-thought-reasoning
https://www.themoonlight.io/en/review/reasoning-beyond-language-a-comprehensive-survey-on-latent-chain-of-thought-reasoning
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★ Final Hidden States

★ Chain-of-Embedding

★ Attention patterns

★ Information flow

What the model internals tell us ?



SRL4LLMs @ AAAI2026

Reasoning correctness 
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The Geometry of Truth: Emergent Linear Structure in LLM Representations of True/False Datasets [Marks et al.  COLM 2024] 

London is the capital of the UK. (True)
New York is the capital of UK (False).

https://arxiv.org/pdf/2310.06824
https://arxiv.org/pdf/2310.06824
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★ Final Hidden States

★ Chain-of-Embedding

★ Attention patterns

★ Information flow

What the model internals tell us ?
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Transitional and developmental

Latent Space Chain-Of-Embedding Enables Output-Free Llm Self-Evaluation [Wang et al.  ICLR 2025] 

Chain-of-embedding
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Chain-of-embedding
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Take the  Magnitude & Angle into consideration:

After normalization, 

Latent Space Chain-Of-Embedding Enables Output-Free Llm Self-Evaluation [Wang et al.  ICLR 2025] 
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CoE Feature Distribution Discrepancy

Probability density function

Correct samples
Incorrect samples

Latent Space Chain-Of-Embedding Enables Output-Free Llm Self-Evaluation [Wang et al.  ICLR 2025] 

Chain-of-embedding
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Self-evaluate using chain-of-embedding

Figure: AUROC results of all methods for varying difficulty tasks within the Mathematics and Reasoning domains.

Latent Space Chain-Of-Embedding Enables Output-Free Llm Self-Evaluation [Wang et al.  ICLR 2025] 
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★ Final Hidden States

★ Chain-of-Embedding

★ Attention patterns

★ Information flow

What the model internals tell us ?
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Attention patterns - order sensitivity of demos
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Attention patterns  

Addressing Order Sensitivity of In-Context Demonstration Examples in Causal Language Models [Xiang et al. ACL24-findings]

Same demo but in different positions

Bi-directional attention Attention in Decoder-only Model

Representations are NOT
affected by position

Representations are greatly
affected by position
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★ Final Hidden States

★ Chain-of-Embedding

★ Attention pattern

★ Information flow

What the model internals tell us ?
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Information flow - expand the residual

Expand the feature dimension of  
,               from c to  

Hyper-connections. [Bytedance ICLR 2025]

Residual mixing matrix: How last layer 
output contribute to current layer inputs.
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Fails to preserve the global mean 
of the features

Resulting in training instability

Manifold-Constrained Hyper-Connections. [DeepSeek 2025]

Information flow - instability 
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projects the               
onto a specific manifold 

Two constraints:

1. Non-negative
2. Each row and col sum to 1

1. every output residual receives the same total amount of input signal.
2. every input residual contributes the same total amount to the outputs. 

No input signals are cancelled out! 

Manifold-Constrained Hyper-Connections. [DeepSeek 2025]

Information flow - project to a manifold 
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Summary - Internal Signals

RECAP ✓: We have identified internal signals:

● Hidden states of final token of the input

● Chain-of-embedding

● Attention patterns

● Information Flow

Now ✓: How can we build a self-improvement LLM using its internals?
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LLM

copy

(i) self-evaluate(ii) search(iii) Imagination

Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing. [Tian et al. NeurIPS 24]

Overview: self-improvement
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with internals, e.g., hiddens, geometric, entropy etc

LLM

copy

feedback

(i) self-evaluate
(ii) search(iii) Imagination

Self-improvement (I) - self evaluate

Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing. [Tian et al. NeurIPS 24]
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Example: EMPO

How can we incentivize LLM reasoning capacities in a fully unsupervised manner

Right Question is Already Half the Answer: Fully Unsupervised LLM Reasoning Incentivization [Zhang et al. ICML2025-PUI ]
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1. Samples a set of responses from the current policy model
2. builds semantic clusters according to their equivalence. 

Minimizing the entropy at a semantic-meaning level

Example: EMPO



SRL4LLMs @ AAAI2026 136

Other self-evaluate

[Fu2025 UCSD] Deep Think With Confidence

[Cui 2025 Tsinghua] The Entropy Mechanism of Reinforcement Learning for Reasoning Language Models

[Agarwal 2025 UIUC] The Unreasonable Effectiveness of Entropy Minimization in LLM Reasoning
[Hu et al. ACL25. KCL] Beyond Prompting: An Efficient Embedding Framework for Open-Domain Question Answering
[Hu et al. AAAI25. KCL] Beyond Perplexity: Let the Reader Select Retrieval Summaries via Spectrum Projection Score

https://arxiv.org/abs/2508.15260
https://arxiv.org/abs/2505.22617
https://arxiv.org/pdf/2505.15134
https://arxiv.org/abs/2503.01606
https://arxiv.org/abs/2503.01606
https://arxiv.org/abs/2503.01606
https://arxiv.org/abs/2503.01606
https://arxiv.org/abs/2503.01606
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with internals, e.g., hiddens, geometric, entropy etc

Search

Self-improvement (I) - search
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Example:  search in the latent space

[Zhu et al. ICML25 Spotlight] Soft Reasoning: Navigating Solution Spaces 
in Large Language Models through Controlled Embedding Exploration

https://arxiv.org/abs/2505.24688
https://arxiv.org/abs/2505.24688
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Add different gaussian embeddings,
But control with self-consistency reward

Bayesian optimization 
after dimensionality reduction

Example:  search in the latent space
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self-evaluate

with internals, e.g., hiddens, geometric, entropy etc

Imagination

Self-improvement (III) - imagination
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Example I: self-taught

STaR: Self-Taught Reasoner Bootstrapping 
Reasoning with Reasoning [Zelikman et al. Neurips22]

https://arxiv.org/pdf/2203.14465
https://arxiv.org/pdf/2203.14465
https://arxiv.org/pdf/2203.14465
https://arxiv.org/pdf/2203.14465
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[Fang et al. EMNLP2025] WebEvolver: 
Enhancing Web Agent Self-
Improvement with Co-evolving World 
Model

Example II: Web Agent

https://arxiv.org/pdf/2504.21024
https://arxiv.org/pdf/2504.21024
https://arxiv.org/pdf/2504.21024
https://arxiv.org/pdf/2504.21024
https://arxiv.org/pdf/2504.21024
https://arxiv.org/pdf/2504.21024
https://arxiv.org/pdf/2504.21024


Takeaways:
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Internal Signals ✓: What the model internals tell us?
○ Reasoning correctness
○ Reasoning efforts
○ Input sensitivity
○ Information flows

Self-Improvement ✓: How to leverage model internals for self-improve LLMs
○ Self-Criticize: entropy/confidence
○ Diverse and efficient search in latent space
○ Imagination can self-generate data (label)



Conclusion and Open Questions
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Challenges: principles

145

● A gap remains between theoretical foundations and empirical practice.

● Scalability has not been sufficiently verified.

● Theoretical assumptions are often difficult to validate.
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Challenges: latent CoTs

146

● Latent CoT may overfit to task-specific reasoning patterns during 
training. 

● Internal reasoning may not align with verbalized explanations.

● Recurrent refinement paths are difficult to control or constrain.

● Recurrent mechanisms incur significant computational overhead.
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Challenges: understanding and editing

● Can SAE really extract better features?

● How to generalize to different models?

● Interpretability vs Task Performance ?

● Incorporate the priors in time

[Kantamneni et al.  ICML 2025] Are Sparse 
Autoencoders Useful? A Case Study in Sparse Probing.

[Thasarathan et al. ICML 2025] Universal 
Sparse Autoencoders: Interpretable Cross-
Model Concept Alignment

[Yan et al. EMNLP 25]  
Encourage or inhibit monosemanticity?  Revisit 
Monosemanticity from a Feature Decorrelation Perspective 

[Lubana et al, 2025]  Priors in time: Missing inductive biases for language model interpretability
[Song et al. 25] LLM Interpretability with Identifiable Temporal-Instantaneous Representation

https://arxiv.org/pdf/2502.16681
https://arxiv.org/pdf/2502.16681
https://arxiv.org/pdf/2502.16681
https://arxiv.org/pdf/2502.03714
https://arxiv.org/pdf/2502.03714
https://arxiv.org/pdf/2502.03714
https://arxiv.org/pdf/2502.03714
https://arxiv.org/pdf/2502.03714
https://arxiv.org/abs/2406.17969
https://arxiv.org/abs/2406.17969
https://arxiv.org/abs/2406.17969
https://arxiv.org/abs/2511.01836
https://arxiv.org/abs/2509.23323
https://arxiv.org/abs/2509.23323
https://arxiv.org/abs/2509.23323
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Why we care about the time ?

Using geometric features for 
Early misalignment detection?

Input Story

Track “changes in time”

Timeline progression

Priors in time: Missing inductive biases for language model interpretability. [Lubana et al, 2025]



Challenges:  LLM as world model
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1. Early prediction ?

1. Faithful to the true reasoning process ?

1. Probabilistic prediction, incorporate uncertainty .
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Internal predicts the future earlier (I)

Write a rhyming poem.

next-token match

plan

Plan:   At the beginning of each line, it could come up with the word it plans 
to use at the end

?

On the Biology of a Large Language Model. [Anthropic 2025]
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Internal predicts the future earlier (II)

Write a rhyming poem.

Generation 
process

On the Biology of a Large Language Model. [Anthropic 2025]
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Are LLMs are good simulators ? Not faithful

❏ Predicted CoTs are not faithful to what they think
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❏ Simulation results should convey diversity/Uncertainty

Are LLMs are good simulators ? Not probabilistic

Chain-of-Thought Reasoning via Latent State-Transition. [Wu et al. Arxiv 2025]



Thank you!
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● Slides
● Full list of references

https://srl4llm.github.io/

Questions?

hanqi.1.yan@kcl.ac.uk Guangyichen1994@gmail.com schwarzjn@gmail.com

https://srl4llm.github.io/
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